Thermal Burns

• Epidemiology
 – Rank third among injury related deaths in kids aged 1-9
 – Pediatric and elderly patients have the highest morbidity and mortality
 – Approximately 80,000 hospitalizations each year
 • 1/3 – ½ are younger than 18
 – Birth to age 4 account for ~50% of pediatric burns
• Most common types in childhood
 – Flames
 – Scalds
 – Contact
 – Cold
 – Radiation
• In toddlers, scalds account for 80% of thermal injuries
• Toddlers also have the highest rate of contact burns
• Young school age kids play with fire
• Older kids take risks with fireworks and gasoline
• More common in boys than girls
• **Pathophysiology**
 – Skin serves to:
 • Protect from infectious agents
 • Regulate body temperature
 • Barrier against fluid loss
 – Skin consists of two layers, the epidermis and dermis
 • Epidermis has four layers
 – Stratum corneum – most important layer in protection against water loss and infection
 – Stratum lucidum
 – Stratum granulosum
 – Stratum germinativum
 • Dermis consists of hair follicles, nerve endings and connective tissue
• **Pathophysiology**
 - With deep burns, there may be a clear cut area of irreversible necrosis
 - Surrounding that, an area of ischemia
 • Tissue here may survive or die depending on preservation of blood flow
 - Surrounding the ischemia zone is a zone of hyperemia
 • Increased blood flow promoted by numerous mediators liberated from injured tissues
• Severe burns of >25% TBSA
 – Noninjured tissues will also swell secondary to presence of various mediators

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Source</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histamine</td>
<td>Mast cells from burned skin</td>
<td>Increases capillary permeability, arteriolar dilatation, and venular contraction</td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>Arachidonic acid released from burned tissue and inflammatory cells</td>
<td>PGE₂, PGI₂; potent vasodilators; increase microvascular permeability</td>
</tr>
<tr>
<td>Thromboxanes</td>
<td>Platelets in the burn wound</td>
<td>Thromboxanes A₂ and B₂; vasconstrictors; contribute to tissue ischemia</td>
</tr>
<tr>
<td>Kinins</td>
<td>Inflammatory cells</td>
<td>Increase venular permeability</td>
</tr>
<tr>
<td>Serotonin</td>
<td>Inflammatory cells</td>
<td>Vasoconstrictor; reduces blood flow to burn wounds</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Adrenal medulla</td>
<td>Vasoconstrictor; contributes to wound ischemia, increased systemic vascular resistance</td>
</tr>
<tr>
<td>Oxygen radicals</td>
<td>Burned tissue</td>
<td>Vasoconstrictor; may be responsible for intestinal ischemia (angiotensin) and increased systemic vascular resistance (vasopresin)</td>
</tr>
<tr>
<td>Platelet aggregation factor</td>
<td>Burn wound platelets</td>
<td>Vasoconstrictor; increases capillary permeability and burn edema</td>
</tr>
<tr>
<td>Angiotensin II and vasopresin</td>
<td>Renal juxtaglomerular cells</td>
<td>Vasoconstrictor; increases capillary permeability</td>
</tr>
</tbody>
</table>
– These mediators impair cardiac contractility and increase vascular resistance
 • Sets a scene for
 – Hypovolemia
 – Hypoperfusion
 – Tissue ischemia
 – Renal failure
 – SIRS
• Classification
 – Thickness of a burn is directly related to the source of burn and time in contact
 – First degree
 • Erythematous and painful
 • Involve epidermis without blistering
 • Heal within 4-5 days without scarring
 • E.g. sunburn
• Classification
 – Second degree/partial thickness
 • Superficial partial thickness burns
 – involve partial destruction of dermis
 – Red, weeping, blistered and painful
 – Heal in 7-10 days with minimal scarring
• Deep partial thickness burns
 – Involve greater than 50% of dermis, destroying nerve fibers
 – White, pale appearance, and are less painful
 – >2-3 weeks to heal, and usu req grafting for long term
 – Patients with significant burns at risk for fluid loss
• **Classification**
 – **Full thickness/third degree burns**
 • White, waxy or leathery and do not bleed, painless
 • At high risk for infection and fluid loss
 • Several weeks to heal and scar significantly
 – **Fourth degree burns**
 • Not commonly used terminology
 • Involve destruction of underlying structures like fascia, tendons, muscle and bone
 • Mostly seen with severe electrical injury
• Extent of Burn
 – “Rule of Nines”
 – Superficial burns should not be included in calculation as they do not affect fluid loss
 – In adults:
 • Head and each arm are 9% of TBSA each
 • Anterior and posterior trunk and each leg are 18% TBSA each
 • Neck and groin are 1% TBSA each
– In kids
 • Area of child’s palm is ~1% TBSA
• Initial assessment
 – ABC’s
 – Determination of burn depth
 – TBSA involvement
 • Circumferential burns noted, as they can lead to compartment syndrome and require escharotomy
 – Circumferential burns of the chest may interfere with ventilation
 • Remove all clothing
 • Apply saline soaked gauze/sheet to wounds
 – Decreases environmental exposure and pain
• Labs
 – CBC and chemistries
 • Baseline values, as pt may soon experience major fluid shifts and changes in metabolic status
 – U/A
 • Assess for myoglobin, which can lead to renal function impairment
• Airway/Breathing
 – House fires, indoor fires, and chemical fires may involve respiratory tract burns resulting in inflammation and edema
 – Anticipate airway compromise with
 • Stridor, hoarseness, carbonaceous sputum, perioral or perinasal burns
 • Intubate
 – Airway edema may not be apparent until 48 hours after a burn, and, if you wait….difficult intubation
 – Anticipate a narrowed airway, and have smaller ETT available
 » Supraglottic injury usually a result of direct thermal injury
 » Lower airway edema a result of chemicals such as smoke, and leads to chemical pneumonitis
• Ventilation
 – Is high PEEP low volume ventilation in burn patients beneficial? Burns, 2004
 • Retrospective study of 61 patients
 – Inhalation injury increases mortality up to 40% in combination with a severe burn
 – If thermal injury precedes smoke inhalation, lung damage is less severe than vice versa
 • Mechanism?
 – Inhalation injury treated with mechanical ventilation
• Ventilation
 - In inhalation injury, many of the conditions of ARDS and VILI are induced by initial insult
 • Cellular integrity disrupted
 • Cellular function altered
 • Blood flow regulation altered
 • Capillary leak
 - High PEEP, low volume ventilation helps with decreasing incidence of pulm edema, but no difference in mortality seen
• All victims of house or indoor fires should be evaluated for CO poisoning
• Circulation
 – A burn that is 15-20% TBSA will result in hypovolemic shock
 • “burn shock” results from system wide extravasation of fluids into unburned tissues
 • This is coupled with increased evaporative water losses
 – Replace with isotonic fluids, not albumin
 • Capillary leak leads to extravasation of albumin, increasing oncotic pressure in interstitium, and increasing extravasation of fluid
• Circulation
 – Parkland Formula:
 • 4 ml x TBSA x weight (kgs)
 • Half of total fluids given in first 8 hours, next ½ over 16 hours
 – Done slowly secondary to severe capillary leak present; increased fluids will increase total body and wound edema because of increased hydrostatic pressure in the face of lower oncotic pressure
 » Titrate for UOP ~ 1cc/kg/hr
 » Pulmonary edema can develop rapidly
 – Added to maint. requirements
 • Warm fluid
 – As pt is at risk for hypothermia
• Triage
 – Admit to hospital if:
 • Partial thickness burns 10-20% TBSA
 • Full thickness burns 5% TBSA
 – Burn Center
 • Partial thickness burn > 20% TBSA in any age
 – Or >10% in kids <10yrs of age
 • Full thickness burns >5%
 • Burns to face, hands, feet, genitalia, major joints
 • Inhalation burns
 • Electrical burns
 – All others OK for outpt tx.
• **Treatment**

 – **Pain control**
 • Cover burns
 • NSAIDs, narcotics

 – **Clean burns**
 • Unroof blisters, never aspirate
 – Burn fluid
 » contains cytokines that suppresses neutrophil and lymphocyte response
 » Interferes with fibrinolysis
 » Increase inflammatory response which increases infectious risk
 » Thromboxanes promote dermal ischemia, leading to progression of burn depth
 » Great culture medium for bacteria
• **Treatment**
 – All burns at increased risk for infection
 • Tetanus vacc should be given, if needed
 – NO role for initial antibiotic therapy
 – Topical creams are preferred for burns
 • Decrease water loss
 • Contribute to pain control
 • Inhibit bacterial and fungal growth
 • Keep area safe from dessication
• Silver Sulfadiazine 1%
 – Painless and bactericidal, good for Gm + orgs
 – May stain skin, ineffective against Pseudomonas and leads to hyponatremia

• Mafenide Acetate
 – Carbonic anhydrase inhibitor
 – Bacteriostatic with good pseudomonal coverage
 – Penetrates eschar
 – Painful and may lead to metabolic acidosis
• Treatment
 – Elevate extremity
 • Failure to do so leads to increased edema, which will compromise blood flow to ischemic areas
 – Dressings
 • Amniotic membrane
 • Keratinocyte culture
 • Artificial skin
 • Human allograft
 • Pigskin
 • Dressing adheres to the wound until epithelialization occurs
• Treatment
 – Nutritional support
 • Catabolic response is severe, and BMR may be >2x baseline
 • Metabolic requirement increases with extent of burn
 • High catecholamines, cortisol and glucagon antagonize effects of insulin and GH
 – Body less able to use fats, muscle becomes energy source
 • High fat intake deleterious
 – Fatty acids, in their oxidized form, are inflammatory to cells
 – Systemic oxidants elevated in burn patients and endogenous antioxidants are low
• Morbidity
 – Burn patients die for three main reasons
 • Burn shock during the first few hours
 • Respiratory failure in the following days
 • Septic complications and SIRS in following weeks
 – The first two reasons are now rare thanks to advances in fluid management and ventilator support
 – This has led to increased prevalence of infection as a cause of late mortality
 • Infection is now the biggest killer in the burn unit
• **Infection**
 - Rates are similar to other groups of immunocompromised patients
 - Increased infection susceptibility secondary to
 • Local factors
 – Open wounds
 – Incompetent gut barrier
 – Exposure of cartilage, bone and joints
 • Systemic factors
 – Global decrease in cellular immune function
 – Neutropenia is common, and neutrophil function is depressed
 – Increased gut permeability
 – Occult bacteremia occurs with wound manipulation
• Infection
 – Difficult to recognize
 • Typical burn exhibits inflammation along with erythema, tenderness and edema
 • Burns, secondary to widespread mediator release, are also associated with fever, in the absence of infection
 • Infection of wounds may lead to sepsis and to deeper wound damage
Burn wound infection
Intercompartmental infection
• Infection
 – Broad spectrum prophylactic antibiotics contraindicated
 • Promote fungal growth
 – Antistreptococcal antibiotics
 • Contraindicated since wound excision and closure practice combined with topical creams has dramatically reduced wound infection rates
• Survival benefit in Critically Ill burn patients receiving selective Contamination of the Digestive Tract, Annals of Surgery, March 2005
 – 107 pts
 • > 14yrs old, with burns of >20% TBSA
 – SDD included
 • IV cefotaxime for four days
 • Topical oropharyngeal polymixin, tobra and ampho
 • 10ml solution of polymyxin, tobra and ampho QID
 – Reduction in mortality of 57% in burn ICU and 50% in hospital mortality
 – Reduction in primary endogenous infections, PNAs and UTIs due to community bacteria
 – No difference in incidence of secondary endogenous infections due to hospital bacteria
• Healing
 – Occurs by epithelialization, which begins in hair follicles that remain in dermis
 – Emerging epithelial buds grow together to close the wound
 – Full thickness wounds destroy follicles, so grafts must be used
• Scarring may be extensive
• **Nonaccidental Burns**
 - 10-20% of burns in kids are inflicted
 - 16-20% of children admitted to hospitals with burns are victims of abuse

• **Have recognizable patterns or linear lines of demarcation**

• **Severe burns to hands and feet in stocking glove pattern is classic**
Electrical Burns

• Epidemiology
 – Result in over 1500 deaths per year
 – Up to 1/3 of electrical burns are household burns, seen mostly among children
Pathophysiology

- Electrical burns result from thermal energy produced as current passes through the body
- Thermal energy produced is proportional to current
- Extent of injury depends on:
 - Resistance of skin, mucosa and internal structures
 - Type of current
 - Frequency of current
 - Duration of contact
 - Intensity of current
 - Pathway taken by current
• Resistance
 – Is inversely proportional to tissue injury
 – Nerves, muscles and blood vessels have low resistance
 • Current passes through these and causes damage
 – Water will decrease resistance
 • Results in moist areas of body, like the axilla, sustaining greater injury
• Type of current
 – AC more dangerous than DC
 • AC produces muscle tetany caused by continual contraction and relaxation with each cycle
 • Typically found in household electricity
 • 60Hz current changes 120 times per sec
 – Prevents muscle relaxation and keeps it in a continual refractory state
 – If it happens to chest wall muscles, suffocation occurs
 – If a patient is holding on to current, can’t let go
 • DC current found in medical settings and is found in lightning strikes
 – At risk for VFib or asystole
• Voltage
 – Low current injuries
 • Young kids putting electrical cord in their mouth
 – Medium current and High current
 • Seen in adolescents with risk taking behavior
 – Lightning strikes and climbing electrical poles
• Path of Current
 – Current will flow from point of contact to the ground or part of the body that completes the circuit
 – Hand to hand flow
 • 60% mortality
 – spinal cord transection at C4-C8
 – suffocation by way of chest wall tetany
 – myocardial damage
• Path of Current
 – Hand to Foot
 • 20% mortality
 – Cardiac arrhythmias
 – Foot to Foot
 • Less than 5% mortality
• Assessment
 – ABC’s
 • Cardiac monitoring secondary to arrythmias
 – VFib seen in low voltage and AC injuries
 – High voltage injuries produce asystole
 – Minor superficial injury may mask significant underlying tissue damage
 • Consider head, spine and abdominal CT’s
• Triage
 – Low voltage injuries
 • Ok for home after 4 hours of ED cardiac monitoring
 – Medium and high voltage injuries
 • Admit to hospital for at least 48-72hrs of cardiac monitoring
 • Watch for myoglobinuria
 – Alkalinize urine, and increase UOP
Chemical Burns

- Between 25,000 and 100,000 burns in US each year
- Morbidity and mortality of less than 1%
- Children and adults with similar rates of exposure
• Acid burns
 – Result in coagulation necrosis
 • coagulation of proteins with some retention of cell architecture
 – Drain cleaners (sulfuric or hydrochloric acid)
 – Toilet cleaners (hydrochloric or phosphoric)
 – Car batteries (sulfuric acid)
• Alkali Burns
 – Produce liquefactive necrosis
 • No recognizable cellular architecture left
 – Lye (NaOH)
 – Cement (K, Ca and NaOH)
 – Oven and drain cleaners
• Treatment
 – Remove all clothes
 – Irrigation for 30min
 • DO NOT neutralize burn
 – Exothermic reaction may produce bad thermal injury
 – If ingested, charcoal is contraindicated as it does nothing to neutralize substance and obscures endoscopy
References

- Reed et al, Emergency management of pediatric burns, Pediatric emergency Care, Feb 2005
- Sheridan, R, Sepsis in pediatric burn patients, Pediatric Critical Care medicine, 2005 Vol.6
- Klein et al, Burns, Pediatrics in Review, Dec 2004
- Hansbrough et al, Pediatric Burns, Peds in review, April 1999